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Abstract
A study of the magnetic structure of YFe4Al8 is presented, based on the
reported magnetic structure, as given by a neutron diffraction study; cycloid,
with moments in the a–b plane and with two Fe sublattices with a 140◦
phase difference between them. Calculations were performed, using density
functional theory, for cycloids with q = 2π

a (τ, τ, 0), with τ varying between
0 and 1. The calculated magnetic structure agrees with the structure deduced
from neutron diffraction results, however with a simpler description. The
YFe4Al8 magnetic structure can be described by a single Fe lattice with a
cycloid propagation vector q = 2π

a (τ, τ, 0) with τ = 0.865; there is no need for
a second Fe lattice with an arbitrary phase difference. We show that the same
description can be applied to DyFe4Al8 and HoFe4Al8.

1. Introduction

The MFex Al12−x (M = rare earth or actinide) compounds crystallize in a relatively simple
crystalline structure over a large composition range (x), which has allowed a systematic study of
the system, with particular interest for the ordered compounds MFe4Al8. The crystal structure
is body centred tetragonal, a ThMn12-type structure which belongs to the I 4/mmm symmetry
group. The rare earth or actinide atom occupies the 2a sites, at the origin and in the centre of
the unit cell. For the 1:4:8 stoichiometry, the Fe atoms fully occupy the 8 f sites at the corners
of a rectangular prism centred on the 2a sites. The Al atoms occupy the 8 j and 8i sites.

Studies of polycrystalline samples of the rare earth series in the late 1970s determined
antiferromagnetic interactions for the Fe sublattice with a range of ordering temperatures
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between 90 and 200 K [1, 2]. The ordering temperatures of the magnetic rare earth atoms
were lower than 50 K.

In the case of YFe4Al8, Y is non-magnetic and therefore the Fe moments form the only
magnetic lattice. The magnetic transition temperature for YFe4Al8 was reported as 185 K [1, 2]
and 94 K [3]. Polycrystalline samples of REFe4Al8 (RE = La, Ce, Lu, Y [4] and Tb [5]) were
studied by Mössbauer spectroscopy and neutron diffraction. The compounds were shown to
order between 130 and 200 K with distinct types of spiral structures requiring two sets of
wavevectors for their description. The Fe moments were reported to be close to 2 μB per atom.

According to previous results, the Fe moments in the Y compounds order in a spin spiral
with the propagation vector along [110] [4, 6]. The spin spiral lowers the symmetry of the
REFe4Al8 system, since the propagation vector q = 2π

a (τ, τ, 0) is not invariant under a
tetragonal fourfold rotation, consequently the eight Fe atoms in the unit cell, which would
be equivalent in the absence of the spin spiral, are split into two sublattices with the same
propagation vector but a non-zero phase difference [7]. YFe4Al8 was found to order at around
185 K, with the Fe moments forming a cycloid in the a–b plane with propagation vector
q = 2π

a (0.135, 0.135, 0) [4]: the phase difference between the two Fe sublattices was given as
±140◦, with a magnetic moment of 2.1 μB.

Single crystals of REFe4Al8 were also studied. Neutron diffraction and magnetic x-ray
diffraction measurements for DyFe4Al8 and HoFe4Al8 determined a cycloid Fe lattice with
a wavevector along the [110] direction and an ordering temperature of 175 K; the reported
magnetic moment was 1 μB/Fe in the a–b plane [8]. The Dy and Ho sublattices were found to
order around 50 and 80 K respectively, with a magnetic structure that follows the Fe cycloid.
The propagation vectors are similar to the YFe4Al8 wavevector, q = 2π

a (0.133, 0.133, 0) for
DyFe4Al8 and q = 2π

a (0.142, 0.142, 0) for HoFe4Al8.
Measurements on YFe4Al8 single crystals, grown with bulk charges 1:4:8, showed an

ordering temperature of 100 K, which is much smaller than the 185 K determined previously
for the polycrystalline samples [2, 4]. A later study of nominal YFe4Al8 and LuFe4Al8 single
crystals confirmed that the samples are richer in Fe than expected [6].

Another Mössbauer spectroscopy study of YFe4Al8 and ErFe4Al8 confirmed the gradual
ordering of the Fe lattice [10]. The low-temperature spectra are consistent with the 1:4:8
stoichiometry. It is suggested that the rare earth lattice has a negligible effect on the
Fe sublattice, as the temperature behaviour and the hyperfine field are the same for both
compounds. The magnetic moment, estimated by comparison with the hyperfine field value
for pure Fe, is given as 0.7 μB/Fe.

The reported experimental values for the Fe magnetic moment vary from 0.7 μB/Fe,
determined by Mössbauer spectroscopy [10], to 2.1 μB/Fe, measured by neutron
diffraction [4]. Both values are far from the values determined for similar compounds: 1.3 μB

for LuFe4Al8 [6], for example. Although the reported magnetic moments of Fe vary over a
large range of values, within each report the Fe moments for different compounds are similar:
for REFe4Al8 (with RE = La, Ce, Y and Lu) the values reported range from 1.8 to 2.1 μB [4],
for the Dy and Ho compounds the values are in the range 1.0–1.3 μB [6, 8], and another study
claims a value of 0.7 μB [10] for YFe4Al8 and ErFe4Al8.

The differences in the magnetic properties of compounds with close but differing
compositions could explain the disagreement between previous results, however there is still no
unified view about the properties of these compounds. Therefore an analysis of the magnetic
structure of YFe4Al8, with a calculation of the magnetic moments and a detailed study of the
spin spiral, was performed. The starting point was the magnetic structure reported by the
neutron diffraction study [4] (Fe moments in the a–b plane) and the analysis was carried out
for the cycloid structure with propagation vectors q = 2π

a (τ, τ, 0) with 0 � τ � 1.
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2. Calculation

2.1. Method

The calculations, based on density functional theory, with the von Barth–Hedin
parameterization for the local density approximation, were performed using the augmented
spherical wave method modified to account for the spin spiral structures, as described
in [11–13].

The magnetic moment and density of states were determined by self-consistent
calculations, with YFe4Al8 constrained to several magnetic configurations. The number of
reciprocal lattice points in the irreducible part of the Brillouin zone was 10 × 10 × 10, which
corresponds to 555 inequivalent points. Convergence with respect to the number of reciprocal
points was confirmed by some calculations with 4207 k-points. The variation of the magnetic
moment is less than 0.001 μB/atom. Since the calculation of the energy is more sensitive to the
number of points in the reciprocal space, the total energy of each magnetic configuration was
determined using the magnetic force theorem (MFT) [14] with 1000 reciprocal lattice points
in the Brillouin zone. The eigenvalue sum was calculated at 0 K and at 100 K, the latter using
the Fermi-Dirac distribution and calculating the exact chemical potential; these results differ
by less than 0.05 mRyd and do not change the positions of the maxima and minima. The value
used in the calculations was T = 100 K. The MFT was further tested using two series of
calculations with different charge densities which resulted in similar energy curves, with the
maxima and minima in the same positions, with deviations smaller than 0.06 mRyd.

2.2. Magnetic moments

The density of states and magnetic moment were calculated self-consistently for the non-
magnetic and for several magnetic configurations.

In figure 1 the density of states for the non-magnetic state of YFe4Al8 is plotted. The total
density of states at EF is 270 sta/f.u., and the major contribution (48 sta/Fe) is from the Fe
atoms. The Fe 3d states show a narrow maximum exactly at EF and a further maximum, wider
than the first, at 0.12 Ry below EF. Figure 2 shows the density of states for the ferromagnetic
configuration. A comparison of figures 1 and 2 shows that the main effect of allowing the
formation of magnetic moments is the splitting of the Fe states: one would therefore expect to
find the majority of the magnetic moment on the Fe sites.

The magnetic moment was calculated self-consistently for cycloids with the moments in
the a–b plane and the propagation vector along the [110] direction, given by q = 2π

a (τ, τ, 0),
with τ varying between 0 and 1. As seen in figure 3, the Fe magnetic moments are similar
for all magnetic structures, varying between 1.23 and 1.30 μB, and the values for the two
sublattices always coincide. The Y moment is lower than 0.1 μB/Y and the Al is essentially
non-magnetic. One can conclude that the orientation of the magnetic lattice has little influence
on the magnitude of the individual moments. The reported experimental values for the Fe
moment in YFe4Al8 range from 0.7 [10] to 2.1 μB [4], which makes difficult a meaningful
comparison with the calculated result. The calculated value is, however, similar to the reported
Fe moment of 1 μB for DyFe4Al8 and HoFe4Al8 [8] or 1.3 μB for LuFe4Al8 [6].

2.3. Magnetic structure

Symmetry analysis leads to the conclusion that there are two Fe sublattices [7] in compounds
of this type. Although the two Fe sublattices are not related by any symmetry operation, they
have the same symmetry operations (the neighbourhood of the two sublattices is the same),
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Figure 1. Total and partial density of states of the paramagnetic state of YFe4Al8. E = 0
corresponds to the Fermi Level.

therefore the two iron sublattices are identical, with the same magnetic moments and magnetic
structure. This is in agreement with Mössbauer spectroscopy measurements, since only one
value of hyperfine field is detected [9], indicating that all the Fe atoms have the same magnetic
and structural surroundings.

In order to analyse the two Fe sublattices, we label four different Fe positions (see figure 4):
site 1, at position r1 = a(0.25, 0.25, 0.25), and site 2, r2 = a(0.75, 0.75, 0.25), belong to the
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Figure 2. Total and partial density of states of the constrained ferromagnetic state of YFe4Al8.

first magnetic sublattice; the sites 3, r3 = (0.25, 0.75, 0.25), and 4, r4 = (0.75, 0.25, 0.25),
constitute the second sublattice. The atoms along the same line parallel to c belong to the same
sublattice. The relative angle between the moments on sites 1 and 2, belonging to the same
sublattice, will be called α and is given by the spin spiral: α = q ·(r2 − r1). The angle between
the two sublattices will be identified by the angle between the moments on the sites 1 and 3,
which will be refered to as β . In some calculations, we fix β to the value that corresponds to
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Figure 3. Calculated energy variation (open boxes, left-hand scale) and Fe magnetic moment (filled
circles, right-hand scale), for magnetic cycloids with q = 2π
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Figure 4. Magnetic configurations refered to in table 1. The first figure labels the four Fe atoms, as
refered to in the text. The bottom two figures refer to +140◦ and −140◦, respectively.

a spin spiral considering all the Fe atoms as belonging to one sublattice, which means that β

is determined by the propagation vector, β = q · (r3 − r1). In other calculations, we have
considered two Fe sublattices and treated β as a parameter.

The energies for cycloids with different propagation vectors, calculated using the magnetic
force theorem, are plotted in figure 3. All structures have propagation vectors along the
[110] direction, q = 2π

a (τ, τ, 0). The energy differences were calculated relative to the
antiferromagnetic configuration, which corresponds to the wavevector q = 2π

a (1, 1, 0). The
angle between Fe sublattices, β , was fixed as if the four Fe atoms belonged to the same lattice.

The differences in the total energies are of the order of 0.1 mRyd. There is a local minimum
for τ around 0.2, close to the wavevector determined for the cycloid by neutron diffraction for
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Table 1. Comparison of the values of τ , α and β for calculations with one sublattice (rows 1 and
2) with the experimental values (row 3). These four possibilities are illustrated in figure 4.

τ α β Comment

1 0.85 −54◦ 153◦ Energy minima from calculations
2 0.865 −48.6◦ 156◦ Using 1 − τexperimental

3 0.135(2) 48.6◦ ±140(10)◦ Structure described in [4]

Table 2. Summary of two sublattice calculations, with the intersublattice angle β constrained
(calculations i), (ii), (iii)) and free (calculation (iv)).

τ α (deg) β (deg) �E (mRyd) Comment

(i) 0.135 48.6 24.3 0 One sublattice
(ii) 0.135 48.6 140 +0.51 [4]
(iii) 0.135 48.6 −140 −0.10 [4]
(iv) 0.135 48.6 −157 −0.16 Self-consistent

YFe4.4Al7.6 [6]. The lowest energy configuration corresponds to the cycloid with wavevector
q = 2π

a (0.85, 0.85, 0). Our value τ = 0.85 is far from the experimental value of 0.135
determined by neutron diffraction [4], however a more careful look shows similarities between
the calculated and the experimentally determined structures.

The magnetic structure with wavevector q = 2π
a (0.85, 0.85, 0) is shown in figure 4-1. The

angle between the moments on the positions 1 and 2 is α1 = 2π
a (0.85, 0.85, 0) · (r2 − r1) =

−54◦, close to the angle determined by neutron diffraction as α2 = 2π
a (0.135, 0.135, 0) · (r2 −

r1) = 48.6◦. The opposite sign of the angles corresponds to a rotation in opposite directions,
which are equivalent since the [110] and [1̄1̄0] propagation directions are equivalent. The
angles of rotation would be exactly the same if, instead of τ = 0.85, we had τ = 0.865 =
1 − 0.135 (see table 1).

According to the magnetic structure described in [4], the Fe atoms in positions 1 and 3
belong to two different sublattices. The reported angular difference that results from the fit of
neutron diffraction data between the two sites is βneutron = ±140(10)◦ and is not related to the
reported propagation vector. Now considering our wavevector q = 2π

a (0.85, 0.85, 0) and only
one Fe lattice, βcalculation = 2π

a (0.85, 0.85, 0)·(r3−r1) = 153◦. The calculated phase difference
is close to the value determined by neutron diffraction, and furthermore is determined by the
propagation vector q, without the need for a second Fe sublattice.

In order to confirm the conclusions about the number of sublattices needed to describe
the magnetic structure of YFe4Al8, we performed four calculations with propagation vector
q = 2π

a (0.135, 0.135, 0) and (i) one Fe lattice with βi = 2π
a (0.135, 0.135, 0)·(r3−r1) = 24.3;

two Fe lattices with an angular deviation of (ii) βii = 140◦, and (iii) βiii = −140◦,
corresponding to the two possibilities reported in the neutron diffraction study [4]; (iv) two Fe
lattices with all the moment directions calculated self-consistently. The results are summarized
in table 2.

It must be noted that calculations (i), (ii) and (iii) are constrained calculations. In
calculations (ii) and (iii), the spin density is not diagonal, which means that the moments would
tend to change their orientations, if allowed. In calculations (i) (constrained) and (iv) (free), the
spin density is diagonal and the spin orientations are therefore stable.

From the comparison of the first three calculations, we conclude that configuration (iii) has
the lowest energy. Configuration (iii), with two Fe sublattices with q = 2π

a (0.135, 0.135, 0),
αi i i = 48.6◦ and βiii = −140◦, is the most similar to the calculated ground-state structure:
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Figure 5. Relation between the directions of the Fe moments (in the corners) and the Y (in the
middle), represented in the a–b plane.

one Fe lattice with propagation vector q = 2π
a (0.85, 0.85, 0), which determines α1 = −54◦

and β1 = 153◦ (see table 1). The self-consistent orientations from calculation (iv), αiv = 48.6◦
and βiv = 157◦, confirm this idea, since the calculated angles are close to those expected from
the q = 2π

a (0.85, 0.85, 0) structure. In all the calculations, the Fe moment was found to be the
same for both of the sublattices.

The Y moment, although small, also follows the spin spiral, with the moment antiparallel
to the Fe moments along the direction perpendicular to the propagation vector. The Fe
moments closer to Y along the propagation vector direction have a symmetric angular deviation
(see figure 5). Therefore, this configuration can be seen as minimizing the Heisenberg
interaction energy between Fe and Y. To test if the Y moment was responsible for establishing
a relation between the two Fe sublattices, we performed two series of calculations with
different orientations of the Y moment, both with a spin spiral with propagation vector
q = 2π

a (0.85, 0.85, 0): the first with the Y moment aligned following the Fe cycloid and
the second with the Y moment rotated by 90◦. The orientation of the second Fe sublattice was
varied by δ, in a way that β = q ·r + δ. In both calculations, the energy minimum corresponds
to δ = 0 and is symmetric, indicating that the Y orientation is irrelevant in the determination of
the relative orientation of the two Fe lattices.

3. Discussion

The theoretical study of YFe4Al8 consisted of self-consistent calculations of the density of
states and magnetic moments and the comparison of the total energy of different magnetic
configurations, calculated with the use of the force theorem.

The magnetic moment is similar for all the studied magnetic configurations, around 1.3 μB

per atom. The similarity of the calculated values for the Fe moment with the experimental
values for similar compounds, in contrast to the variety of values reported for YFe4Al8, leads
us to believe that the self-consistently calculated Fe moment has a reasonable value. A similar
calculation for the UFe4Al8 compound predicts an Fe moment of 1.4 μB/Fe [15], which
compares with the 1.1 μB/Fe determined by neutron diffraction measurements [16].

From the comparison of the total energy of several cycloid structures with the wavevector
along the [110] direction, we were able to determine the lowest energy configuration. The
magnetic structure consists of a cycloid with a propagation vector q = 2π

a (0.85, 0.85, 0). The
value τ = 0.85 is very different from the neutron diffraction value, τ = 0.135 [4], however our
reinterpretation of the magnetic structure by considering only one Fe sublattice (β = q·(r3−r1 )),
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with q = 2π
a (0.85, 0.85, 0), leads to an angular relation between the Fe moments similar to that

proposed to fit neutron diffraction data. In this way, there is no need for a second Fe sublattice
to describe the magnetic structure. Furthermore, the orientations calculated self-consistently
for q = 2π

a (0.135, 0.135, 0) confirm this reinterpretation, since they converge to essentially the
same result as that given by the q = 2π

a (0.85, 0.85, 0) structure, and have a lower energy than
a calculation performed with the experimental values of τ = 0.135 and β = −140◦, which we
find to be unstable.

The same reasoning can be applied to other compounds which were previously described
as having two magnetic Fe sublattices. DyFe4Al8 and HoFe4Al8 also have a cycloid
magnetic structure with a wavevector q = 2π

a (0.133, 0.133, 0) for DyFe4Al8 and q =
2π
a (0.142, 0.142, 0) for HoFe4Al8 [8]. The Fe magnetic moment is 1 μB for both compounds.

The propagation vectors are similar to the YFe4Al8 wavevector. For DyFe4Al8 and HoFe4Al8,
the experimental angle between the two Fe sublattices is β = τπ + π . This same angle can be
obtained if the experimental value of q = 2π

a (τ, τ, 0) is substituted by q = 2π
a (τ ′, τ ′, 0),

where τ ′ = (1 − τ ). With the latter wavevector, the angles between the Fe within the
same sublattice are maintained and the angles between the two Fe sublattices come naturally
from the relation θ = q · �r. Within the same sublattice the angular rotation is given by
α = 2πτ ′ · (1/2, 1/2, 0) = 2π − 2πτ = −2πτ , and between sublattices the angular rotation
is given by β = 2πτ ′ · (1/2, 0, 0) = π − πτ = −(πτ + π).

The description of the YFe4Al8 magnetic structure with only one Fe lattice is not in
agreement with the previous symmetry analysis of the system [6, 7]. According to these
studies, the spin spiral lowers the symmetry of the REFe4Al8 system, since the propagation
vector is not invariant under a tetragonal fourfold rotation. As a consequence, the four Fe
atoms in the formula unit, which would be equivalent in the absence of the spin spiral, are
split into two sublattices: the directions of the moments in different sublattices are not related,
there is an arbitrary phase difference that can not be predicted by symmetry arguments, and
the two sublattices could have different moments [7]. However, a further analysis shows
that the two different Fe sublattices have exactly the same symmetry, therefore, although
there is no symmetry operation that links the two sublattices, they should be identical. The
neutron diffraction data is fitted with two Fe sublattices with the same atomic moment [4],
and Mössbauer spectroscopy measurements are fitted with just one value of hyperfine field [9],
indicating that all the Fe atoms have the same magnetic and structural surroundings. Moreover,
our calculations predict an angle β that corresponds to the angle given by the spin spiral with
all the four Fe belonging to the same lattice. This is also the case for HoFe4Al8 and DyFe4Al8,
for which neutron diffraction measurements determined an angular difference β = τπ + π

(equivalent to β = τπ , as explained above). The fact that these three compounds can be
described using only one Fe lattice suggests that the value determined for the phase difference
is not arbitrary. Indeed, the calculations show that the alignment of the two Fe sublattices, as
if they belonged to a single sublattice, is stable as the spin matrix is diagonal (that is, the local
spin orientation is stable).

To justify the apparent coupling between the two Fe sublattices, one should first consider
the spin rotation of a Bloch function between two identical Fe sites, for example site 1, r1 =
a(0.25, 0.25, 0.25) and r1′ = a(1.25, 0.25, 0.25). Going from one site to the other corresponds
to a rotation eiq·�r, where �r = a(1, 0, 0), which is just the definition of a spin spiral. The two
‘different’ Fe sites 1 and 4 (at r1 = a(0.25, 0.25, 0.25) and r4 = a(0.75, 0.25, 0.25)) are not
linked by symmetry operations but are linked by hybridization: there is a permanent exchange
of electrons between them. The spin rotation upon passing from atom 1 to 4 and then from
4 to 1′ must be simply the spin rotation from 1 to 1′, that is eiq·�r. As �r1−4 and �r4−1′ are
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Figure 6. Ferromagnetic band structure near the Fermi level. The Fermi level is taken as the energy
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identical, it follows that the spin rotation from 1 to 4 must be half of that from 1 to 1′, which is
exactly the value that corresponds to a single Fe sublattice containing both Fe atoms 1 and 4.

An alternative way to analyse this situation is the following. Let us start by considering an
Fe atom, belonging to one sublattice; this atom will, in the a–b plane, be surrounded by four
Fe atoms that belong to the ‘other’ sublattice. If the angle between the two sublattices is not
that given by the spin spiral, then the angle between each of the four atoms and the moment of
the atom they surround is not the same. These different angles lead to different hybridization
and energy interactions. However, one expects that the Fe atom would hybridize in the same
way with the four equivalent atoms that surround it. To keep the four atoms that surround
the central Fe atom identical, the angle between the Fe moments that minimizes the energy
interaction should be the same for the four atoms. But this is true only if the phase difference
between the two sublattices is zero, meaning that the angle between all the Fe moments is given
by q · �r.

What remains to justify is the actual value of τ = 0.85. In simpler compounds (with
few atoms), an analysis of the band structure and Fermi surface would allow the identification
of Fermi surface nesting for a given q vector, however the number of band crossings in this
compound hinder such a simple analysis. To illustrate this point, we include the ferromagnetic
band structure near the Fermi level, where 30+ band crossings are clearly visible—figure 6.

4. Conclusions

Density functional theory calculations for YFe4Al8 allowed the comparison of several magnetic
configurations. The lowest energy structure agrees with the structure deduced from neutron
diffraction results [4], however with a simpler description: the YFe4Al8 magnetic structure
can be described by a cycloid with the moments on the a–b plane and propagation vector
q = 2π

a (τ, τ, 0), with τ = 0.85 if we consider the calculated value, or τ = 0.865, to agree with
the neutron diffraction data. There is no need for a second Fe lattice with an arbitrary phase
difference to explain the neutron diffraction results. The coupling between the two identical Fe
sublattices is not atributed to the Y sublattice but is explained by the hybridization between the
Fe atoms. Although the calculated band structure is available, there is no way of identifying a
simple Fermi-surface nesting to justify the value of τ = 0.85.
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We show that the same reinterpretation can be applied to DyFe4Al8 and HoFe4Al8, whose
magnetic structures can be described as having just one Fe lattice.

The Fe moment is found to have a value of 1.3 μB within the range of experimental values,
and to be relatively insensitive to the value of the spin spiral propagation vector.
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[13] Sticht J, Höck K H and Kübler J 1989 J. Phys.: Condens. Matter 1 8155
[14] Liechtenstein A I, Katsnelson M I, Antropov V P and Gubanov V A 1987 J. Magn. Magn. Mater. 67 65
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[16] Paixão J A, Lebech B, Gonçalves A P, Lander G H, Brown P J, Burlet P, Delapalme A and Spirlet J C 1997 Phys.

Rev. B 55 14370

http://dx.doi.org/10.1016/0378-4363(77)90241-8
http://dx.doi.org/10.1088/0305-4608/8/5/021
http://dx.doi.org/10.1016/0022-3697(78)90109-9
http://dx.doi.org/10.1016/S0304-8853(98)00075-4
http://dx.doi.org/10.1016/S0304-8853(99)00393-5
http://dx.doi.org/10.1103/PhysRevB.63.054410
http://dx.doi.org/10.1016/S0304-8853(99)00767-2
http://dx.doi.org/10.1103/PhysRevB.61.6176
http://dx.doi.org/10.1021/cm990760c
http://dx.doi.org/10.1023/B:HYPE.0000020411.32596.a6
http://dx.doi.org/10.1080/000187398243573
http://dx.doi.org/10.1103/PhysRevB.50.15834
http://dx.doi.org/10.1088/0953-8984/1/43/016
http://dx.doi.org/10.1016/0304-8853(87)90721-9
http://dx.doi.org/10.1103/PhysRevB.60.R6961
http://dx.doi.org/10.1103/PhysRevB.55.14370

	1. Introduction
	2. Calculation
	2.1. Method
	2.2. Magnetic moments
	2.3. Magnetic structure

	3. Discussion
	4. Conclusions
	Acknowledgments
	References

